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We examine the Brownian motion of pa r t i c l e s  in a gaseous medium, complicated by the influence of iner t ia l  
forces .  The equation for the distr ibut ion function in phase space descr ib ing  motion of this type was 
obtained in [1]. Also presented  in [1] are  the solutions of this equation for  ce r ta in  s imple  pa r t i cu la r  cases .  
The approximate equations of motion of ae roso l  pa r t i c l e s  in coordinate  space were  f i r s t  obtained in [2] and 
solved for  ce r ta in  concre te  p rob lems  in [3, 4]. More exact  equations of motion in coordinate  space, and 
also the l imi t s  of applicabil i ty of the equations of [2], a re  presented  in [5]. 

1. The Fokker -P lanck  equation for  the dis t r ibut ion function of ae roso l  pa r t i c l e s ,  obtained in [1], has the fo rm 

at \ 4 
k ( k v -  Vo.v')i + V.Vo)/= v : /  

(k~- m%o / bl, ~ muoo~/kKT) (1.z) 

Here  v'  is the veloci ty  of the pa r t i c l e s  in the sys tem;  u is the veloci ty  of the gaseous medium; F is the 
d imensionless  external  fo rce  acting on the par t ic les  (measured in bu~ units); V and V 0 a re  the Hamilton opera tors  
(coordinate and velocity,  respec t ive ly) ;  k and X a re  the Stokes and Pec l e t  numbers ,  r espec t ive ly ;  m is the pa r t i c l e  
mass ;  b is a constant of propor t ional i ty  between the r e s i s t ance  fo rce  and the r e l a t ive  veloci ty of the par t i c le  in the 
medium; u~o and l a re  the cha rac t e r i s t i c  flow veloci ty  and dimension; K is Bol tzmann 's  constant;  T is absolute 
tempera ture .  We assume that 

b = const, T ~ const 

Assume that at some instant local equi l ibr ium,  descr ibed  by the following dis t r ibut ion function, occurs  in the 
sys tem:  

( k~ / 3/` v p )  (t = l~) (1.2) 

Here  v(r,  t) and n(r, t) are  the average  veloci ty  and concentrat ion.  This is possible ,  for  example,  in uniform 
t ransla t ional  flow if to exceeds significantly the re laxa t ion  t ime of the aeroso l  pa r t i c les .  If the f i r s t  de r iva t ives  of v 
a re  smal l ,  the solution of (1.1) with the initial condition (1.2) can be writ ten approximately  in the fo rm 

/ ~ / o  (t)t0) (1.3) 

In fact, d i r ec t  substitution of (1.2) into (1.1) shows that (1.3) would be exact if the r ight-hand side of (1.1) had the 
fo rm 

-~-~ (Vo 2 + kDi jVo~Voj ) l  2Dij 0v~ 0vj ~ (1.4) 

With the aid of (1.3) we obtain f rom (1.1) the following equations for n and v [5] 

k v : .  + ( 1 . 5 )  

0~n + div nv = 0 (1.6) 
0t 

Thus, on the average  the motion of an ensemble  of Brownian aeroso l  pa r t i c l e s  can be identified with the motion of 
some compress ib l e  continuum; he rea f t e r  we call  this abs t rac t  medium the ae roso l  fluid. 

Equation (1.6) can be t rans formed  to the Smoluchowski convect ive diffusion equation 

On , t 2 ( v , = v +  I vlnn) "0Y T div nv* = -~ ~ n ~- (1.7) 
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It is na tu ra l  to ca l l  the v e c t o r  v* the c o n v e c t i v e  v e l o c i t y  of the a e r o s o l  f luid.  F r o m  (1.5) we have  

k [ ~ - ~  v ' - - T v l n n ,  y v * - - % - v l n n  - I - v * = u + F  (1.8) 

2. Le t  us a s s u m e  that  t h e r e  is  an obs t ac l e  (body) in the u n i f o r m  t r a n s l a t i o n a l  s t r e a m .  We take u~  as  the v e l o c i t y  
of the und i s tu rbed  flow; l is  the r a d i u s  of the body c r o s s  sec t ion .  Dur ing  p r e c i p i t a t i o n  of a e r o s o l  p a r t i c l e s  onto the 
body under  n o r m a l  condi t ions  the m o s t  e f f e c t i v e  i n t e r a c t i o n  be tween  the d i f fus ive  and i n e r t i a l  mot ions  would obv ious ly  
be expec ted  if the p a r t i c l e  d i m e n s i o n  70 is on the o r d e r  of 10 -5 cm.  L e t  the dens i ty  of the m a t t e r  in the p a r t i c l e  be 
a p p r o x i m a t e l y  1 g .  em  -3. Then 

b ~ l O  -sg.sec "t, k ~  tO -7 uco / l ,  ~ t0 ~ ucol 

([u~ I = cm/sec, [/] = cm) (2.1) 

It  is na tu ra l  to a s s u m e  that  l ~ 10 -3 c m  and uoo ~ ~10 ~ c m / s e c .  Thus ,  the m o s t  e f f e c t i v e  i n t e r a c t i o n  be tween  the 
d i f fus ive  and i n e r t i a l  mo t ions  wil l  o c c u r  fo r  

k ~ l ,  ~ > ~ l  (2 .2 )  

It fo l lows f r o m  t h e s e  r e l a t i o n s  that the in f luence  of p a r t i c l e  i n e r t i a  on the i r  Brownian  d i f fus ion  need be s tud ied  
only fo r  v e r y  l a r g e  X. 

It  is  conven ien t  to s tudy (1.7) and (1.8) in the O~V or thogona l  c u r v i l i n e a r  c o o r d i n a t e s  (for s i m p l i c i t y  we c o n s i d e r  
only the p lane  case ) .  We denote  the s u r f a c e  of the o b s t a c l e - b o d y  by F.  We a s s u m e  that  the s u r f a c e  F is  s ingly  
connec ted ;  at each  point  of the s u r f a c e  we can  d r a w  only a s ing le  n o r m a l ;  these  n o r m a l s  do not c r o s s  anywhere  in the 
ou t e r  l a y e r  P ad jacen t  to F;  the th i ckness  of the P l a y e r  is  nowhere  equal  to ze ro ;  on F the re  is a s ing le  f o r w a r d  flow 
s tagna t ion  point  (we denote  i t  by the l e t t e r  N). Then the O}V c o o r d i n a t e  s y s t e m ,  whose  O ~ - a x i s  is d i r e c t e d  a long  the 
n o r m a l  to F and O r - a x i s  is 15arallel to F ,  wi l l  be n o n d e g e n e r a t e  in P. F r o m  p u r e l y  g e o m e t r i c  a r g u m e n t s  we can 
e s t a b l i s h  that 

0% _ 0% 
o~ o~ 

dr = e~d~ -~- e, ~ dl 1 

o R 0 

0% t 0% i 
- -0 ,  o~1-- . e~, 3 ~ = ~ - e ~  

Here e~ and %? are the unit vectors of the O}~ system, R is the radius of F. In the O~? system (1.7) and (1.8) 
take the form 

On 

1 R t 0 R + ~  o o R 0}  
- - ~ R + ~ [ ~  ~- ~ ~ O~lR+~~ n (2.3) 

. ~, n ~ l n n  + v ~ * = u ~ - r - '  F~ (2.4) 

1 R ~ l n n ) + ( v ~ *  t 0 a ( t , o lnn) 

~, R + ~ -~ . ~, R -~ ~ b-~ ran) 
' (v~* t . 0 , t ~  )] 

+ ~  ~ . + ~ i n n ) ( v ~ * - -  v ,  Inn  +v~*=u~§  (2.5) 

The formulation of the boundary conditions for these equations in the general case is not trivial; however, we do 
not dwell on this here. It is natural to take [2] 

v * - + u + F ,  n -+t  as ~ r  (2.6) 

On=a(n--no) as  ~ 0  (2.7) 
0~ 
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H e r e  a and no a r e  cons tan t s  which a r e  d e t e r m i n e d  f r o m  s o m e  phys i ca l  c o n s i d e r a t i o n s  o r  o ther .  The  s i m p l e s t  
c a s e  for  (2 .3)-(2 .5)  is as a ~ ~ and no ~ 0. Then  the boundary  condi t ion  on F takes  the f o r m  

n = O  as ~ o  (2.8) 

The  a s y m p t o t i c  b e h a v i o r  of v* and n fo r  l a r g e  k depends  s ign i f i can t ly  on the v e c t o r s  u and F in the v i c in i t y  of F .  
F o r  v i s cous  f low, e s s e n t i a l l y ,  

u ~ U l i  ~, u ~ u ~ i  (~--,0) (2.9) 

If the v e c t o r  u is  so leno ida l ,  we can i n t r o d u c e  the f low s t r e a m  func t ion  r By v i r t u e  of (2.9) the s t r e a m  funct ion  
in the v ic in i ty  of Y is  a p p r o x i m a t e l y  equal  to 

~ ~ ~1~o~ ~ , ~ 0 ~ 0  (~--, 0) (2.10) 

F o r  po ten t ia l  f low p a s t  the body the a sympto t i c  b e h a v i o r  of u in the v i c in i ty  of Y i s  not  d e s c r i b e d  by (2.9). 
H o w e v e r ,  t he r e  is  no need to dwel l  on the po ten t i a l  f low c a s e  h e r e .  It m a k e s  s e n s e  to c o n s i d e r  d i f fus ion  of the a e r o s o l  
p a r t i c l e s  to the body only for  those  k f o r  which t h e r e  is  no p u r e l y  i n e r t i a l  p a r t i c l e  f lux to this body, i. e . ,  fo r  k < k*, 
w h e r e  k* is  the c r i t i c a l  va lue  of the Stokes number .  In fac t ,  fo r  k > k* the a e r o s o l  p a r t i c l e  f lux to the body due to 
p a r t i c l e  i n e r t i a  i n c r e a s e s  v e r y  r ap id ly  with i n c r e a s e  of k and begins  to exceed  c o n s i d e r a b l y  the d i f fus ive  flux. It  was 
shown in [6] that the p a r t i c l e  s i z e  fo r  k ~ k* is  two o r d e r s  of magn i tude  l e s s  than the th i ckness  of the h y d r o d y n a m i c  
boundary  l a y e r  in the v i c in i t y  of the poin t  N fo r  a r b i t r a r i l y  l a r g e  v a l u e s  of the f low Reyno lds  number .  T h e r e f o r e  in the 
ca l cu l a t i ons  of p a r t i c l e  d i f fus ion  we m u s t  of n e c e s s i t y  take into account  the inf luence  of the hyd rodynamic  boundary  
l a y e r ;  the use  of the p u r e l y  po ten t ia l  mode l  fo r  f low pas t  the body fo r  k ~ k* is p h y s i c a l l y  m e a n i n g l e s s .  

In o r d e r  to wr i t e  f o r m u l a s  of the type (2.9) fo r  the v e c t o r  F we m u s t  c o n c r e t i z e  the p h y s i c a l  na tu re  of the 
i n t e r a c t i o n  f o r c e  be tween  the p a r t i c l e s  and the body. F o r  e l e c t r o s t a t i c  a t t r ac t ion ,  f o r  e x a m p l e ,  

(ao > O, ~ > O) 
(~ ~ 0) 

(2.11) 

H e r e  ~ is  a p a r a m e t e r  c h a r a c t e r i z i n g  the d e g r e e  of i n t e r ac t i on .  

We neglect hydrodynamic interaction of the particles with the body and the finite particle size, which leads to the 

so-called "anchoring effect." Analysis of the influence of these two factors on the diffusion is so complicated that it 

deserves separate study. 

3. We d iv ide  the f low r e g i o n  a r b i t r a r i l y  into t h r ee  p a r t s :  Q0 is the r e g i o n  ad jacen t  to the base  p a r t  of the s u r f a c e  
F and ex tends  d o w n s t r e a m ,  Q1 is  a thin l a y e r  ad jacen t  to F in the f o r w a r d  and s ide  a r e a s ,  and Q2 is  the r e m a i n i n g  p a r t  
of the flow. The  g r a d i e n t s  of the c o n c e n t r a t i o n  n in Q2 a r e  v e r y  smal l ;  t h e r e f o r e ,  fo r  v e r y  l a r g e  k the d i f fus ion t e r m s  
in (2 .3)-(2 .5)  can be neg lec ted .  As a r e s u l t  we obta in  

0v On 
k ~ - ~  k (vv)v-}-  v ~  u + F , 0-q- "q- div n v ~  0 (3.1) 

In the s t a t i o n a r y  c a s e  with F = F the b e h a v i o r  of the so lu t ions  of the f i r s t  equa t ion  in (3.1) has  been  s tudied  in 
de ta i l  in [6]. We wr i t e  the a sympto t i c  f o r m u l a s  obta ined  in [6] as  ~ ~ 0, 

v =  const for k~k* (3.2) 

( k u2~" )~2, v~u2~ for k<:k* (3.3) 

We denote  the va lue  of n at the point  N by n N. To d e t e r m i n e  n N we m u s t  so lve  the p r o b l e m  

k (vV) v -~ v = u, div nv = 0 (3.4) 
V ~-~u, n-->i  for ~ o o  

Problem (3.4) can only be solved numerically. Finding from (3.3) div v and substituting this value into the second 

equat ion  in (3.4), we obta in  fo r  k < k* 

0 
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Formulas (3.3) and (3.5) are independent of the boundary condition for v as ~ ~ ~. This leads to more restrictive 

conditions for their applicability in comparison with the applicability conditions for (2.9). 

A s s u m e  that  r e l a t i o n s  (2.9) a r e  e f f ec t ive  f o r  ~ ~ ~0 and the exac t  so lu t ion  of (3.4) has been  found for  ~ = ~0- T h e n  
in ca l cu la t ing  v and n in the r e g i o n  0 _< ~ < ~0 we can u s e  the boundary  condi t ion  

n=n(0),  v = v ( 0 )  f o r ~ = 5 0  

It is e a s y  to show that the s i z e  of the r e g i o n  of in f luence  of these  boundary  condi t ions  is  p r o p o r t i o n a l  to k. With 
i n c r e a s e  of k the r e g i o n  of in f luence  i n c r e a s e s  and fo r  k = k* b e c o m e s  equal  to ~0. Consequen t ly ,  the  n e c e s s a r y  
condi t ion  fo r  the app l i cab i l i t y  of (3.3) and (3.5) wi l l  have  the f o r m  

~ ~0 0 - k / k*) (3.6) 

F o r m u l a s  (3.3) and {3.5) a r e  a s y m p t o t i c  expans ions  in ~ of the p r i n c i p a l  t e r m s  of the o u t e r  so lu t ion  of (2 .3) - (2 .5)  
f o r  F = 0  a n d k < k * .  

4. Adapta t ion  of the c o n c e n t r a t i o n  n to the boundary  va lue  at the s u r f a c e  F in the g e n e r a l  c a s e  is p o s s i b l e  if and 
only if in the t r an s i t i on  zone be tween  the r e g i o n s  Q2 and Q1 the d i f fus ive  t r a n s p o r t  to Y i s  c o m p a r a b l e  wi th  the  
c o n v e c t i v e  t r a n s p o r t ,  no m a t t e r  how l a r g e  ~. Na tu ra l ly ,  with i n c r e a s e  of X this t r a n s i t i o n  zone will  be e v e r  c l o s e r  to 
the  s u r f a c e  F ,  and t h e r e f o r e  t h e r e  m u s t  be s o m e  X* such  that  fo r  X < k* in the c o n g r u e n c e  condi t ion  we can  subs t i tu te  
in p l a c e  of V the p r i n c i p a l  t e r m  of the a sympto t i c  expans ion  in ~. Thus ,  

k 2 n ( u l - ~ - - f f u 2  ) ~ 2 ~  i On 
, ~ o~ (k<k*, ~,~ ~r (4.1) 

Condition (4.1) can be satisfied only with a very sharp change of the concentration in the direction toward F. Let 

us assume that there exists a coordinate system {[,U} in which nwill vary more or less smoothly in the direction 

toward F, no matter how large X: 

On/O~-~i  (;~ ---) ~)  (4.2) 

Le t  us  f u r t h e r  a s s u m e  that  the connec t ion  be tween  ~ and [ is l i nea r .  Then  we find f r o m  (4.1) 

= ~Y'~ (4 .3)  

The  va l id i ty  of  t he se  a s s u m p t i o n s  is c o n f i r m e d  by d i r e c t  a n a l y s i s  of the so lu t ions  of (2 .3) - (2 .5)  obta ined  with 
t h e i r  use .  

For comparison we note that for k > k* similar arguments lead to the formula 

= / ' ~  (4.4) 

Using  (4.2) and (4.3), we find f r o m  (2 .3)- (2 .5)  in the s t e a d y - s t a t e  c a s e  

k u2) ~K_,-/, (4.5) 

v~* ~ u ~ ,  -l/' (4.6) 
~2(U I , k 2\On On , ~  u~ ~ 3~n 

t X uS ) ~ + ~u2 ~ + a~ ~K ~n~-~ ~ (4 .7)  

In a c c o r d a n c e  with the p r i n c i p l e  of a s y m p t o t i c  m a t c h i n g  of the o u t e r  and inne r  expans ions  [7], the so lu t ions  of  
(4 .5)- (4 .7)  as  ~ - -  ~ m u s t  a p p r o a c h  the so lu t ions  of (3.4), w r i t t e n  in the new v a r i a b l e s .  It i s  e a s y  to s e e  that  the s o -  
lu t ions  of (4.5) and (4.6) a u t o m a t i c a l l y  ma tch ,  and the so lu t ion  of (4.7) wil l  m a t c h  p r o v i d e d  

n --+ n• exp - -  2k u: --~ (r -~ oo) (4.8) 

This relation must then be taken as the boundary condition for (4.7). It is worthy of note that for the boundary 

conditions (2.8) and (4.8) the solution of (4.7) can be written in closed analytic form 
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~176 ( -  i*0 c,/~ 
o (4.9) 

Here T is the incomplete gamma function. This solution is an extension of the solutions found for certain 
concrete bodies in [3, 8]. 

Formulas  (4.5), (4.6), and (4.9) are the pr incipal  t e rms  of the inner  solution. If the next t e rms  of the expansions 
in ~ are of order  }3, }2 and ~ (for v~, vV, and n, respect ively) ,  then the te rms  dropped in (4.5), (4.6), and (4.9) are of 
o rder  ~-~, ~-'/., and k-'/' in 2,. The outer solution can always be represen ted  in se r ies  form, 

v ~  v(~)~ -{, n ~ ,  n(~))~ -~ ()~-~ ~) (4.10) 

We assume that 

Then the inner  solution is wri t ten in the form 

v*~vr n.~ ~ nr v,~=O (~--*~.) (4.12) 
i>~0 i>~0 

The cor rec tness  of (4.10) is verif ied direct ly  by subst i tut ing these se r ies  into (2.3)-(2.5), wri t ten in the var iab les  
{[, V}, and analysis  of the matching conditions constructed on the bas i s  of (4.10)-(4.11). 

Formulas  (4.5)-(4.8) re ta in  the same form for ax isymmetr ic  problems as well. In connection with the convers ion 
to the s t r eam function, (4.9) changes somewhat in the ax i symmetr ic  case.  We denote by R1 the dis tance f rom the axis 
of symmet ry  to the point on the surface F with the coordinate 77 (here ~? is the arc  length of the contour which a r i ses  
when the surface F is in tersected by any plane passing through the axis of symmetry) .  Then 

n ~ n N e x p  --4k r R~J r0/s) 
0 

0 ~ 

(4.13) 

5. The internal solution obtained is physically meaningful only when the thickness of the QI layer exceeds 
considerably the dimension of the aerosol particles. This condition defines the upper limit with regard to X of the 
effectiveness of (4.9) and (4.13). The thickness of the Q1 layer is of order 

Thus, (4.9) and (4.13) are effective for 

~ i~'/,~, -'/~ (5.1) 

~ l a / 70a (5.2) 

For  very  large  flow Reynolds numbers  the hydrodynamic boundary layer  thickness is of order  

Naturally, the solutions (4.5), (4.6), (4.9), and (4.13) are applicable if 5 << 6", i . e . ,  for particles whose size 
satisfies the inequality 

For par t ic les  whose size does not sat isfy this condition, at large flow Reynolds numbers  it is necessa ry  to solve 
an equation of the type (4.7) with coefficients which depend in a complex fashion on [. 

It is easy to establ ish that with increase  of ~,# v a r i e s f r o m  some finite value up to oo. Therefore  the thickness of 
Q1 is min imum in the vicini ty of N; with increase  of ~?, ~ increases  and takes infini tely la rge  values in the base region. 
Comparing (3.6) and (5.1), we conclude that (4.5), (4.6), (4.9), and (4.13) are  applicable only for those v, for which 
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~< ~o3 (I -- k / k*7 (5.4) 

It is obvious that in the base flow region condition (5.4) will not be satisfied. In Qi the convective particle 

transport is also comparable with the diffusive transport although, in contrast with QI, in directions perpendicular to 
the motion as } ~ 0% Unfortunately this condition does not lead to as significant a simplification of the equations as in 

region QI. 

Differentiat ing (4.9) with respec t  to ~, we find 
v~ 

n N  1 

0 

It can be shown that n N always increases  with ine rease  of k, and signif icantly so, For  example, in the ease of 
Stokes flow past a sphere [3] for k/k* ~ 0.164, n N equals 1.85, for k/k* ~ 0.328, n N already becomes equal to 3.01, and for 
k/k* = 1, nNequals  infinity for all bodies. Thus the factor  n N in (3.5) leads to inc rease  of the diffusional par t ic le  flux to 
the body with inc rease  of k. The centr ifugal  forees,  descr ibed in (5.5) by the exponential t e rms ,  reduce the diffusional 
flux to the side port ions of the body. Thus, the ine r t i a  of the aerosol  par t ie les  leads to eonsiderable  deformation of the 
form of the diffusion al precipi ta t ion on the body. It is diffieult to establ ish in the general  ease which t e rms  make the 
pr incipal  contr ibut ion to the integral  par t ic le  flux to the body (for the sphere in Stokes flow the integral  flux var ies  as 
(1-0.480 k) for smal l  k). 

Integrating (5.5) over the surface F, we find that 

3 % - -  ~" d'q ,-ffh - V  

]P u 

Here the o rder  of the te rms  dropped is stated for the case in which the following expansion of the te rms  of the 
outer solution is poss ible :  

v~ ~ v~,~ ~ § v ~  3, v~ ~ v~o~ § v ~ : ,  n ~ no + n ~  (~-~ o) (5.7)  

For  ax i symmetr ie  problems (5.6) takes the form 

I , : - - -  nN/~\dr @$/~exp [ - 6k \% O(~ -1) 
2'/q ~ (i + V3) lJ~ \ 02 -G(IJ (5.8) 

The condition for applicabil i ty of (5.6) and (5.8) is 

k ~ k* (t -- ~.-'/' ~0 -l) (5.9) 

6. Let us see how the resu l t s  obtained above change in the case in which an at t ract ive force,  r epresen tab le  in the 
vicini ty of F in the form (2.11), acts between the par t ic les  and the body. We consider  the s teady-s ta te  problem. The 
pr incipal  t e rms  of the outer expansion, determined from (3.1), in the vicinity of F will be approximately equal to 

v~.~--b l ,  v~ .b2 ,  n ~  n. ( ~ 0 )  (6.1) 

Here bl, b2, and n.  are  functions of ~1. They can be determined easi ly by a numer ica l  technique. Then we find 
from the condition of diffusion flux comparable  with the convective flux in the t rans i t ional  zone between the regions Q2 
and Qt that no mat te r  how large 

O n / O ~ t  for ~=~.~ (6.2) 

Thus, in the region Q1 (2.3) takes the form 

a , a~n 0 (6.3) 

The omitted term in this equation is of order X -I. The solution of (6.3) must match with the outer solution. 
Therefore 

' 0  o ~" 
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Here  G is a constant which is de te rmined  through the boundary conditions for  n on F; 0(bl) is a unit step function, 
equal to l f o r b l >  0 and 0 f o r b l >  0 a n d b l <  0. We find f rom (6,3) that 

/ -~ n, bl0 (hi) -~ O 0 ~-1) (6.5) 

Consequently, the par t i c le  flux in the d i rec t ion  toward F in the region Q1 is independent of ~ to within t e rms  of 
o rde r  k -1 and, what is pa r t i cu la r ly  important ,  is independent of the se lec t ion  of the boundary condition for  n on the 
surface  F. It follows f rom (2.4), (2.5) that in the region Q1 the pa r t i c l e s  can be considered ine r t i a l e s s  ff the condition 
k << ~-1 is sat isf ied.  Let  us assume that the numbers  k actually are  sufficiently smal l .  It is easy to see that in this 
case  the par t i c les  can be considered ine r t i a l e s s  in the region Q2 as well. The re fo re  

v~ ~ a (--a0 + ai~) + (~za2 + ul)~ ~, % ~ u ~  (~ ~ 0) (6 .6)  

If expansion (6.6) exis ts ,  the solution of (2.3) in the s teady-s ta te  case  in the region Q1 can be represen ted  in the 
fo rm of the s e r i e s  

n ~  ~ n , ~  -m (~-' ~) (6 .7)  
m>j~ 

Ser ies  (6.7) is the m o r e  effect ive the l a rge r  c~. For  smal l  ~ it becomes  unsuitable for  calculat ions.  In fact, for  
(x -- 0 it is neces sa ry  to use the t ransformat ion  

For  la rge  ~ the t ransformat ion  

leads to the objective.  

~ ~ = ~  

Thus we can expect  to obtain an asymptotic  s e r i e s  which is uniform in c~ by sett ing 

~, - ~, = ~, (~ + ;C v.) 

~ o  

(6.8) 

An analogous phenomenon occurs  whenever  the coeff icient  of the pr incipal  t e rm of the asymptotic expansion of 
u + F in ~ approaches zero.  
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